I’ve been reading about battery breakthroughs for decades. And I remember when the latest in battery tech was alkaline, then Ni-Cd, then Li-Ion, and now LiPo. All of those have ended up in consumer products.
Also, the battery pack for a cell phone 30 years ago was about the same volume and weight of an entire smartphone, with a capacity of about 500 mAh. They are also far cheaper if you account for inflation.
Batteries have improved incapacity by about a factor of 10 and the cost per watt-hour has reduced by about 99% in the last 30 year. All without a single advancement in the technology, apparently.
I wouldn’t call it a single advancement but hundreds. The materials might be largely the same but manufacturing is huge. When you roll up some metal to make a battery then increasing the number of layers is a huge challange when they’re already tiny.
LFP is actually a relatively old battery technology, it’s only now that the patent is expired that it’s starting to breakthrough (outside of China, they somehow got a license if I understand it correctly).
I’ve been reading about battery breakthroughs for decades. And I remember when the latest in battery tech was alkaline, then Ni-Cd, then Li-Ion, and now LiPo. All of those have ended up in consumer products.
Also, the battery pack for a cell phone 30 years ago was about the same volume and weight of an entire smartphone, with a capacity of about 500 mAh. They are also far cheaper if you account for inflation.
Batteries have improved incapacity by about a factor of 10 and the cost per watt-hour has reduced by about 99% in the last 30 year. All without a single advancement in the technology, apparently.
/s
I wouldn’t call it a single advancement but hundreds. The materials might be largely the same but manufacturing is huge. When you roll up some metal to make a battery then increasing the number of layers is a huge challange when they’re already tiny.
What do you mean by that?
I would say there have been a great many advancements in technology. I mean, that’s what all these improvements are, right?
It was sarcasm, which seems to be harder to convey in text than any number of battery advancements.
You skipped Ni-MH there, that was major for not having the memory problems of Ni-Cd. We still use those in AA and AAA rechargeable batteries.
Ni-MH production for EVs was effectively shutdown by Texaco and later Chevron through patent acquisitions.
https://en.m.wikipedia.org/wiki/Patent_encumbrance_of_large_automotive_NiMH_batteries
Holy shit. I had no idea.
Chevron is pretty fucking evil for a lot of reasons, but we’ll add this one to the pile, I guess.
totally TIL worthy
A little pedantic note, LiPo is still a type of Li-Ion (maybe I got that right)
and the bigger recent breakthrough was LFP (Lithium iron phosphate / LiFePO4)
And probably safe to call Sodium-Ion and solid state the next big phases of development
LFP is actually a relatively old battery technology, it’s only now that the patent is expired that it’s starting to breakthrough (outside of China, they somehow got a license if I understand it correctly).
You can buy sodium ion cells online right now. It’s not the next phase, it’s here.
Hey! Don’t screw up Lemmy’s Debbie Downer vibe!
/s