• rah@feddit.uk
    link
    fedilink
    English
    arrow-up
    45
    arrow-down
    4
    ·
    1 month ago

    The number of kaon to pion and neutrino/antineutrino decays the team observed is higher than the 8.4 per 100 billion predicted by the Standard Model, but it’s still within the uncertainty parameters.

    So then how the fuck does that hint at new physics? Idiots.

    • benignintervention@lemmy.world
      link
      fedilink
      arrow-up
      11
      arrow-down
      1
      ·
      1 month ago

      They demonstrated the event to five sigma certainty, which is significant, but it’s within the uncertainty in the standard model. If they can demonstrate the same or similar things to greater exactness, it could guide research that changes the standard model

      • rah@feddit.uk
        link
        fedilink
        English
        arrow-up
        1
        arrow-down
        4
        ·
        1 month ago

        You’re just repeating the article. Nothing you said contradicts what I said.

          • rah@feddit.uk
            link
            fedilink
            English
            arrow-up
            1
            arrow-down
            2
            ·
            1 month ago

            I thought you were legitimately confused

            I’m just curious: if I had been confused, what were you expecting would have happen if you simply repeated what the article had already stated without adding anything?

    • Artyom@lemm.ee
      link
      fedilink
      arrow-up
      9
      arrow-down
      1
      ·
      1 month ago

      The basic procedure at CERN is that in order to be certain about something that’s super random is to conduct the experiment trillions of times until you get a couple thousand events and you get to beat down your error. If they startseeing something, it’ll still take them a couple of years of data to prove it past their uncertainty requirements.