Wildass hypothesis I just pulled out of my ass with an undergraduate degree in applied physics: maybe interaction with particles emerging from quantum vacuum?
Okay, that sounds like great technobabble. I’m going to watch star trek now ;)
This doesn’t answer the question in the context of this theory, but the current understanding is that light does lose energy as it travels through expanding space. As the space it’s in expands, the wavelength gets longer, and the energy goes down. It doesn’t go anywhere; energy just isn’t conserved in an expanding space-time.
If the light loses energy, then it must surely lose it to something? And if your last point that energy isn’t being conserved in our universe, in which case we are either in some deep shit with the first law of thermodynamics, or our universe isn’t an isolated system.
Further into the article he says that, "It would be irresponsible of me not to mention that plenty of experts in cosmology or GR would not put it in these terms. We all agree on the science; there are just divergent views on what words to attach to the science. In particular, a lot of folks would want to say “energy is conserved in general relativity, it’s just that you have to include the energy of the gravitational field along with the energy of matter and radiation and so on.” "
So energy is conserved on the whole, it’s just not conserved if you consider photons apart from their greater context.
The energy is actually not conserved across the universe in general relativity, as it is currently understood. Conversation of energy is due to the time symmetry, which the expansion of space breaks.
“Energy is conserved in general relativity, it’s just that you have to include the energy of the gravitational field along with the energy of matter and radiation and so on.”
It’s probably not that the light is losing energy it’s just that the distance it travels over time (the time we “know” is supposed to take for a given distance) appears compressed because of unknown/unseen gravitational forces.
Think of it like this: If there were only one star in the universe and it emits a particle of light we could calculate the distance it would travel over time. Yet we know that star will still have a gravitational effect on that light… No matter how far away it gets.
That’s what they mean by light “losing energy”. Is the energy actually “lost”? Not really. Is this slowing (aka appearance of lost energy) caused by dark energy/dark matter or something more fundamental like spacetime itself being stretched or compressed due to the gravity of astronomical objects we can see or “dark matter”/“dark energy” or… ? We don’t really know for certain yet!
Removed by mod
You try being a bright ray of sunshine for everything around you all day every day. Sometimes you just get tired, ya know?
Wildass hypothesis I just pulled out of my ass with an undergraduate degree in applied physics: maybe interaction with particles emerging from quantum vacuum?
Okay, that sounds like great technobabble. I’m going to watch star trek now ;)
Removed by mod
Don’t forget to reverse the polarity of the neutron flow!
Shit, if only my turbo encabulator wasn’t broken!
those are old tech.
obsolete even.
You sound like you know what you’re talking about. I’m taking notes. 📝🧐
It’s those damn inertial dampeners again
To the dark matter, of course.
;)
This doesn’t answer the question in the context of this theory, but the current understanding is that light does lose energy as it travels through expanding space. As the space it’s in expands, the wavelength gets longer, and the energy goes down. It doesn’t go anywhere; energy just isn’t conserved in an expanding space-time.
If the light loses energy, then it must surely lose it to something? And if your last point that energy isn’t being conserved in our universe, in which case we are either in some deep shit with the first law of thermodynamics, or our universe isn’t an isolated system.
Removed by mod
Further into the article he says that, "It would be irresponsible of me not to mention that plenty of experts in cosmology or GR would not put it in these terms. We all agree on the science; there are just divergent views on what words to attach to the science. In particular, a lot of folks would want to say “energy is conserved in general relativity, it’s just that you have to include the energy of the gravitational field along with the energy of matter and radiation and so on.” "
So energy is conserved on the whole, it’s just not conserved if you consider photons apart from their greater context.
The energy is actually not conserved across the universe in general relativity, as it is currently understood. Conversation of energy is due to the time symmetry, which the expansion of space breaks.
Removed by mod
“Energy is conserved in general relativity, it’s just that you have to include the energy of the gravitational field along with the energy of matter and radiation and so on.”
Quote taken from Atzanteol’s article.
It’s probably not that the light is losing energy it’s just that the distance it travels over time (the time we “know” is supposed to take for a given distance) appears compressed because of unknown/unseen gravitational forces.
Think of it like this: If there were only one star in the universe and it emits a particle of light we could calculate the distance it would travel over time. Yet we know that star will still have a gravitational effect on that light… No matter how far away it gets.
That’s what they mean by light “losing energy”. Is the energy actually “lost”? Not really. Is this slowing (aka appearance of lost energy) caused by dark energy/dark matter or something more fundamental like spacetime itself being stretched or compressed due to the gravity of astronomical objects we can see or “dark matter”/“dark energy” or… ? We don’t really know for certain yet!
Removed by mod
Entropy, capital “E”.