A prototype is available, though it’s Chrome-only and English-only at the moment. How this’ll work is you select some text and then click on the extension, which will try to “return the relevant quote and inference for the user, along with links to article and quality signals”.
How this works is it uses ChatGPT to generate a search query, utilizes WP’s search API to search for relevant article text, and then uses ChatGPT to extract the relevant part.
Do you have a source for that? Not that I’m doubting you, just curious. I read once that the internet infrastructure required to support a cellphone uses about the same amount of electricity as an average US home.
Thinking about it, I know that LeGoog has yuge data centers to support its search engine. A simple web search is going to hit their massive distributed DB to return answers in subsecond time. Whereas running an LLM (NOT training one, which is admittedly cuckoo bananas energy intensive) would be executed on a single GPU, albeit a hefty one.
So on one hand you’ll have a query hitting multiple (comparatively) lightweight machines to lookup results - and all the networking gear between. One the other, a beefy single-GPU machine.
(All of this is from the perspective of handling a single request, of course. I’m not suggesting that Wikipedia would run this service on only one machine.)
Based on this article, it seems that on average an LLM query costs about 10x when compared to a search engine query.
Man - that’s wild. Thank you for coming though with a citation - I appreciate it!
Removed by mod