• Socsa@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    54
    arrow-down
    4
    ·
    6 months ago

    Bayesian purist cope and seeth.

    Most machine learning is closer to universal function approximation via autodifferentiation. Backpropagation just lets you create numerical models with insane parameter dimensionality.

    • kibiz0r
      link
      fedilink
      English
      arrow-up
      9
      arrow-down
      1
      ·
      6 months ago

      A monad is just a monoid in the category of endofunctors, after all.

      • hotsox@lemmy.blahaj.zone
        link
        fedilink
        English
        arrow-up
        22
        arrow-down
        5
        ·
        edit-2
        6 months ago

        Universal function approximation - neural networks.

        Auto-differentiation - algorithmic calculation of partial derivatives (aka gradients)

        Backpropagation - when using a neural network (or most ML algorithms actually), you find the difference between model prediction and original labels. And the difference is sent back as gradients (of the loss function)

        Parameter dimensionality - the “neurons” in the neural network, ie, the weight matrices.

        If thats your argument, its worse than Statistics imo. Atleast statistics have solid theorems and proofs (albeit in very controlled distributions). All DL has right now is a bunch of papers published most often by large tech companies which may/may not work for the problem you’re working on.

        Universal function approximation theorem is pretty dope tho. Im not saying ML isn’t interesting, some part of it is but most of it is meh. It’s fine.