cross-posted from: https://slrpnk.net/post/2234684

There’s a few things I’d change now that I’ve looked at it for a few days and had some discussions - I think I’d rearrange the site for a few reasons around safety, though I do think they wouldn’t want the crucible to have to travel too far, maybe I should have sunk the factory bunker-like into the ground, with only the doors at ground level. Maybe a different design entirely as I mentioned below. Either way, I think this might be relevant here, even if it isn’t real yet.

So this one is kind of different from most solarpunk art, but then I suppose that’s the goal of this series. It’s not a scene of a farm, or a homestead, or a city full of people gardening. But I think scenes like this might be necessary. One thing I’ve noticed about solarpunk art is that the societies it depicts are usually pretty developed, plenty of concrete and refined metals in many of the scenes. But there’s almost no scenes of solarpunk industry.

So where do all the tools, vehicles, and building supplies in the happy pastoral scenes come from? If we never show it either we’ve got no answers or we’re might be implying that there’s an underclass off-screen somewhere bearing all the costs (pollution, habitat loss, dangerous labor) of producing these goods so the people in the pictures can LARP as self-sufficient farmers. I want solarpunk art to be punk, not solarneoliberal so I want to make it clear that this future is genuinely equally distributed. I want to imagine the industry of a society almost obsessed with internalizing externalities. I want to see “but what happens with the waste?” and “where will the power come from?” affecting their every decision.

I think that society might be proud enough of whatever solutions they come up with to put them on a postcard.

I decided to start with steel recycling - steel and concrete production are both incredibly fuel-heavy industries, and society needs a certain amount of both to work, especially when rebuilding. Both take tremendous amounts of heat to produce.

I decided to try a scene where that heat was provided by a solar furnace using a ton of computer-controlled mirrors arranged stadium-seating style on the walls of an old pit mine, and a massive parabolic concentrator focusing the light on something like a blast furnace. I know almost nothing about steel manufacturing or solar furnaces so I’m certain my attempt to smash them together gets a lot of details laughably wrong (ironically steel can be smelted just fine using an electric arc furnace, so it’d probably be easier to just use existing industry technologies and hook it up to a green grid. I might try another junkyard someday scene showing that someday.) Perhaps cement production would have been a better fit for a solar furnace but I think that would require even longer stretches of heat.

I chose the design of the solar furnace with the giant parabolic mirror because they’re an established technology – several of these things exist in real life, and that seemed like a safer bet. Perhaps a better design would have been to do the scene in reverse, without the parabolic concentrator. Place the furnace up on the cliff, looking out over a massive, rising field of mirrors, all aimed at the furnace like a solar collection tower. Maybe I’ll do that one someday too.

Possibly these folks would use an electric arc to get the furnace primed in the morning, and the solar furnace to heat it through the day. I imagine the place is just as busy at night, with crews cutting and sorting scrap and preparing the mix of metals in the skip cars for the day shift.

One thing I really like about solar furnaces (and the reason I wanted to use one in a scene of heavy industry, even when I’m not sure about the practicality of the idea) is that they’re so simple. Mirrors, framework, and established formulas for overall shape, and you can produce incredible heat - up to 3,500 °C. The materials are commonly available, and require very little tech base to produce or assemble, and they can take some of the highest-resource-consuming tasks off the grid. They’re not as reliable as electric power, and that’s a trade-off, but the right combination of technologies, and some adjustment of expectations and schedules, could significantly drop the overall, societal requirements for the collection and storage and distribution of electricity.

I think it’s very much worth considering all sources of power, but also reconsidering some ways we’ve industrialized around profit motives and while ignoring externalities. A lot of technologies were in use recently (last 100 years) that might be a better fit for a more solarpunk world, but were dropped because they weren’t as fast at making product, or because modern power or fuel are so cheap.

And I think there are some cool old designs with potential (and, as always, tradeoffs). For example, in all the scenes I’ve done and have planned, you’ll see cable-powered streetcars and trains, rather than battery-powered electric busses. I’m not against batteries by any means, but they’re a limited resource. Streetcars worked fine for decades long before batteries were anywhere near efficient enough to move a vehicle they were onboard, and having the cars powered directly by grid the means more batteries available for other tasks, or simply less need to destroy habitats mining for the materials to make the kind of maximum-efficient batteries needed for onboard vehicles (and fewer to recycle after they’ve been used and reused long past the end of their functional life).

As for the negatives of a solar furnace, for one, they’re absolute hell on local birds. They’ll burn up anything that flies through the solar flux. (I’ve got a workshop design in the works where the dangerous parts are indoors, which I actually prefer). They depend on clear skies, not just of clouds but airborn dust, smoke, and haze can severely impact their effectiveness. Perhaps a more solarpunk world would have a different pace of life, less need to grind. Maybe the workers would be essentially on-call and if weather is good enough that day, they get on a train to the site, and if it isn’t, they get the day off, work at a different site, or perhaps the steel co-op pays them to help with other work in the community. A place that prioritizes minimizing harm over profits would likely be a very foreign country to all of us.

  • perestroika@slrpnk.net
    link
    fedilink
    arrow-up
    4
    ·
    edit-2
    1 year ago

    Interesting essay, thanks. :) When I think of a subset of the problem (where will all the metals come from), I keep remembering that we still make cars out of steel. Thin steel, sometimes without even a layer of zinc to protect it…

    …and it rusts (unless you live in very specific climates) within two decades. If there’s snow on the road and you spray salt to prevent ice formation, it rusts faster. Since the product development cycle guarantees that spare parts cannot be found by that time, and manufacturers often design closed-source products and retain broad intellectual property rights, nobody complains much - a car is expected to be useless in 20 years, and we accept this… but must we?

    In a solarpunk world, I would imagine that some cars are made of other materials - chemically digestible composites, aluminum (if a structure can be made totally rigid, aluminum is OK, if a structure flexes, aluminum is forbidden due to fatigue), plywood (the first airplanes heavily utilized plywood before aluminum replaced it)…

    …and they will be open-source. Compatible parts can be made even if the original manufacturer closes down. As a result, there will be demand for longevity, and the “steel cycle” will turn a lot slower, with far less irreversible loss. At least I hope it will.

    • RoboGroMo@slrpnk.net
      link
      fedilink
      arrow-up
      4
      ·
      1 year ago

      yeah, i also really like the idea of algae grown biomas or electronically captured carbon being used for materials for cars, boars, etc - open source cars could have core components designed to last pretty much forever with components that have a shorter life such as body panels and interiors made from bio-plastics, e-plastics, even more traditional materials like wood and ceramics which are still fantastic materials when used in the right place and could come from coppiced trees and managed woodland.