AI’s voracious need for computing power is threatening to overwhelm energy sources, requiring the industry to change its approach to the technology, according to Arm Holdings Plc Chief Executive Officer Rene Haas.

  • Rognaut@lemmy.world
    link
    fedilink
    English
    arrow-up
    36
    arrow-down
    10
    ·
    7 months ago

    Sounds like some sensationalized bullshit. They don’t give a single number or meaningful statement and they are paywalled.

    • kakes@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      22
      arrow-down
      2
      ·
      7 months ago

      I don’t disagree that they should back up their claim, but it does intuitively make sense. AI - GPT LLMs in particular - are typically designed to push the limits of what modern hardware can provide - essentially eating whatever power you can throw at it.

      Pair this with a huge AI boom and corporate hype cycle, and it wouldn’t surprise me if it was consuming an incredible amount of power. It’s reminiscent of Bitcoin, from a resource perspective.

      • FaceDeer@fedia.io
        link
        fedilink
        arrow-up
        8
        arrow-down
        15
        ·
        7 months ago

        No, it makes no sense. India has over a billion people. There’s no way that amount of computing power could just magically have poofed into existence over the past few years, nor the power plants necessary to run all of that.

        • The Octonaut@mander.xyz
          link
          fedilink
          English
          arrow-up
          12
          arrow-down
          1
          ·
          7 months ago

          This is a future prediction, not a current observation.

          I’m not saying it’s correct as a prediction, but “where are the extra power plants” is not good counter-argument.

          • FaceDeer@fedia.io
            link
            fedilink
            arrow-up
            4
            arrow-down
            15
            ·
            7 months ago

            A couple of months ago the average temperature where I live was well below freezing. Now it’s around twenty degrees C.

            By this time next year it’ll be thousands of degrees!

        • BakerBagel
          link
          fedilink
          English
          arrow-up
          8
          ·
          7 months ago

          The current LLM’S kinda suck, but companies have fired huge swaths of their staff and plan in putting LLMs in their place. Either those companies hire back all those workers, or they get the programs to not suck. And making LLMs actually capable of working unsupervised will take more and more energy.

          • kakes@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            3
            arrow-down
            1
            ·
            7 months ago

            My take is that LLMs are absolutely incredible… for personal use and hobby projects. I can’t think of a single task I would trust an LLM to perform entirely unsupervised in a business context.

            Of course, that’s just where LLMs are at today, though. They’ll improve.

          • FaceDeer@fedia.io
            link
            fedilink
            arrow-up
            1
            arrow-down
            14
            ·
            7 months ago

            Sure, but it’s simply not physically possible for AI to be consuming that much power. Not enough computers exist, and not enough ability to manufacture new ones fast enough. There hasn’t been a giant surge of new power plants built in just the past few years, so if something was suddenly drawing an India’s worth of power then somewhere an India’s worth of consumers just went dark.

            This just isn’t plausible.

        • Revv@lemmy.blahaj.zone
          link
          fedilink
          English
          arrow-up
          3
          arrow-down
          2
          ·
          7 months ago

          If only there had been another widespread, wasteful prior use of expensive and power hungry compute equipment that suddenly became less valuable/effective and could quickly be repurposed to run LLMs…

          • FaceDeer@fedia.io
            link
            fedilink
            arrow-up
            4
            arrow-down
            7
            ·
            7 months ago

            Pretty sure the big AI corps aren’t depending on obsolete second-hand half-burned-out Ethereum mining rigs for their AI training.