It’s also a bit strange to see a production-intent build of a solar electric vehicle without any solar panels. Still, Aptera shared that technology will be implemented next alongside the SEV’s production-intent thermal management system and exterior surfaces.
This thing is pure vaporware. My new Leaf isn’t.
Im not saying it isn’t, but fitting custom curved prob special solar panels on a test vehicle does not sound cost efficient, especially when you can test the solar panels separately perfectly fine.
Cars are complex to construct properly even without drivetrains, plenty to test there.
I suppose that the solar panels are in a field somewhere. It’s much more efficient.
There’s something that people really fail to grasp with solar, and that’s the fact there is bugger all energy in the sun, and you need a huge surface area to get any meaningful energy.
A home solar array often takes up a significant chunk of the roof area, and the amount of surface area a car typically has means that even perfectly efficient solar panels wouldn’t collect enough energy to significantly contribute to the vehicle’s range.
There’s a good reason why vehicle manufacturers don’t bother adding them.
There is good amount of energy in the sunshine. The output of solar arrays struggle to make big power out of small surface areas because we haven’t figured out how to get more than 20% of the power that hits the panel. If they do get 20% or more, it’s been with very expensive and fragile panels.
Yes, but with a light and efficient vehicle, along with enough area covered in solar, it should be able to get you about 15 miles of free travel when left out on a sunny day. It has a battery. It isn’t just running on sunshine and lollipops.
Or 43 miles in Aptera’s case
I’m not believing they’ll get even close to that in a production vehicle that’s US street legal.
The body weighs around 360kg, with a 60kwh battery it supposedly weighs around 800kg (the smallest and lightest option is 25kwh), with a drag coefficient of 0.13.
In comparison to some of the most efficient cars - the Hyundai Ioniq 6 is around 1,860kg with a drag coefficient of 0.21. Tesla Model 3 is around 1760kg with a drag coefficient of 0.219.It’s going to be a whole lot more efficient than the average car just based on these numbers.
Now it depends on how much of the car’s surface will be covered by the solar panel and what’s the panel’s efficiency.
The Honda civics in the 1980’s weighed around 800 or so kg as well. You know one of the reasons they got heavier? Crash ratings and safety features.
So once again I’m calling bs that they will get 45 miles out of this. Even if they got it classified as a motorcycle and scape around the car safety requirements, it still won’t get a real world 45 miles a day from solar charging. Your math will never add up to that.
I’ll believe that when I see it.
15 miles a day under ideal conditions isn’t really a significant amount, most EVs could run for multiple weeks without being charged under those conditions.
I currently have an ICE car, and with how much I use it, 15 miles a day getting added to the battery on average would probably cover most of my usage. And you can still plug it in for longer trips. You’re not forced to rely on solar alone.
Solar panels are also added weight, which reduces range. Any way you look at it, it makes more sense to have the solar panels at a base location you go back to.
I guess an RV, or a camp trailer, makes sense to have panels on it, but that’s about it
Solar panels are incredibly thin and light. There is no reason not to include them.
There’s also things like Sentinel mode on Teslas that use power.
My main gripe is people think a solar car will never need to be charged, or only on trips, and that’s just not the case.
Please just do trains. They can even be solar powered - a lot easier than this.
Kind of a different scale. $5.15 billion per mile of track for Caltrain. Aptera hasn’t even broken a billion in funding.
Trains are easy and they’re easily electrified already. So putting solar on the trains won’t have any advantage.
Rails are the difficult part of railways. They never seem to put them between my house and my work. They’ve put something called a road in between instead.
I presume they meant to put in railway infrastructure.
Railways cost so much less than one highway, we could have a system basically from home to work.
(eg smol trams to a midway se station to high-speed trains)Is that true in California? Caltrain is costing $5.15 billion per mile.
Trains are already electrified.
Something I find incredibly weird about US company culture is how they talk about overtime like it’s a good thing.
“Our employees worked weekends, days and nights to make this happen! We wouldn’t have succeeded without people who are willing to give up their personal lives!”
I hope they not only succeed but get shares. Doing weekends or nights for a company you don’t (partially) own feels like a con.
it is a con
Find people who care about what they’re working on and they’ll go well beyond the extra mile. As an extra motivator, make it clear the company won’t be around if they don’t succeed. I’m sure these employees have shares, but tha only really matters if the company succeeds (extra motivation!). Unfortunately, there have been a ton of green/green-adjacent automotive “startups” that have struggled to gain a foothold. See also:
(I’m sure many others)
Fisker is nothing but a conman, always has been. His MO is literally to start a company, secure funding, make a personal fortune and then abandon the bankrupt shell and leave customers hanging.
Here are a few other interesting green automotive startups that didn’t make it:
- Sono Motors’ Sono: Compact EV with solar panels, power sharing, intended to be easily repairable and included a detail manual. They had prototypes but never went to production. Now the company does niche solar applications.
- Workhorse: Series Hybrid (think Chevy Volt) Pickup truck with onboard power for tools etc (was announced around or even before Rivian). Was a very pragmatic idea IMO. Later sort-of resold to Lordstown. Now company does some other things, like drones.
- Lordstown Motors’ Endurance: EV Pickup Truck with hub motors. Made a few hundred, but they have been dragging it out long enough for Ford to make electric pickups. And the idea wasn’t too original even when it was announced.
deleted by creator
A solar powered car that topped at 70mph would be ideal,
But goddamn, could you imagine just having one that topped at 30 MPh in a city? Infinite travel!
If you can park on top of a parking garage, or in a spot on ground level where sunshine is not too much blocked by the surrounding buildings, you could surely commute on sunshine. Home parking barely matters for day shift workers in this scenario.
Oh. That absolutely won’t happen. You’ll be losing battery power while you’re driving around.
They can make all solar vehicles that will go and keep going as long as there’s sunshine, but they aren’t anything a regular person could use.
Yep. Iirc apterra does 100wh/mi and is covered with less than 1000w of solar, so you only make at most 10 miles of range per hour in perfect solar conditions.
We have that already; it’s called a bicycle.
I’m excited to see them succeed. I love it when stuff is designed with function over form, and made practically. I’m a tall person, this is the only small electric vehicle I feel I could actually fit in
It’s good to see that Aptera is still a possibility!
For real. I was so hopeful for the Type-1 and would’ve reserved one if I had the money.
I want them to succeed. I really hope they do.
Bummer. I want to give them my money, but they’re not accepting new investments right now.